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A compact difference scheme derived in (Phillips and Rose, SIAM J. Stark Comput. 7, 288 
(1986)) for treating the equilibrium equations of elasticity is studied. The scheme truns out to 
be inconsistent and unstable. A multigrid method which takes into account these properties is 
described. The solution of the discrete equations, up to the level of discretization errors, is 
obtained by this method in just 16 work units, where a work unit is the work involved in 
relaxing the linest grid equations once. 0 1987 Academic Press, Inc. 

1. INTRODUCTION 

In this paper, we study a compact finite difference scheme for the equilibrium 
equations of elasticity derived in [3]. We focus here on the two-dimensional case 
only. We begin in Section 2 with the derivation of the scheme for a general source 
term in the elasticity equations (i.e., a non-equilibrium case). This is needed later 
when a multigrid method is considered. 

In the first step, equations for displacements and stresses in a cell are obtained. 
They consist of equations which approximate the equilibrium equations and those 
which represent some single-valuedness of displacements in cell centers. The second 
step is a process of elimination of stresses. This results in a set of equations involv- 
ing displacements only. The equations divide the set of grid points into two disjoint 
sets; different equations are given for each set. 

Section 3 deals with the inconsistency of the resulting scheme. A Taylor expan- 
sion of the different terms for either of the sets of equations shows that both are 
inconsistent with the equations of elasticity. However, a closer look reveals that 
consistency-in-the-average exists. That is, the sum of the equations in a cell shows 
the desired consistency. This fact is used later when a multigrid method for that 
scheme is derived. 

Section 4 deals with the instability of the scheme. It is shown by means of Fourier 
analysis that the interior equations admit highly oscillatory solutions for ‘the 
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homogeneous problem. This means that there exist non-smooth components that 
will not affect the residuals almost at all. This is a numerical instability since it does 
not have a differential analog. Schemes with such a property have been studied in 
[2] and are referred to as quasi-elZ@tic schemes. In particular, a multigrid method 
for such schemes is described there. 

Sections 5 and 6 describe the multigrid ideas and their implementation in the 
present context. A standard Gauss-Seidel relaxation was used for relaxing interior 
equations, while a modification is introduced when traction boundary conditions 
are relaxed. The coarsening used was done in a way compatible to the dis- 
cretization. An averaging operator is applied to grid functions before inter~o~at~~g 
them to finer levels. This is done in order to remove unstable components in the 
approximation. The resulting full multigrid algorithm (nested interation) solves the 
discretized equation, up to the ievel of discretization errors in just 16 work units. 
Thus a very efficient method of solution is obtained. 

2. COMPACT SCHEME 

In two dimensions, the stresses T = (r I, r2) are given in terms of the displacements 
u= (u,, u2) as 

*11 = i a,,u, + rl 3.Y1L12 (2.!a) 

T22 = 11 &p1 + i &,u; (2.lb) 

T21 = 212 = +(&2~41 + ax,Uzi. (2.Ic) 

The parameters is q, and 0 are given in terms of Young’s modulus E and Poisson’s 
ratio 1’ by 

E 
i=(,-v2)’ 

Ev E 
~=(l-,,‘) a=(l+. 

The equations of elasticity in terms of the stresses are 

~,,~,I + kpIZ=.K 

Q2l + Z.qT22 =.L 

where in equilibrium 7, = TZ = 0. We assume here a nonequilibrium case, i.e., ,T!, J?‘Z 
are not zero. This is needed later when coarse grid equations are considered. 

A compact scheme for square cells has been derived in 13]. It is assumed that 
displacements and stresses are given on cell midfaces as shown in Fig. i. The width 
of a cell is 2h. The scheme is given by 
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‘4 T 2 

FIGURE 1 

where f, , f2 are midcell values of T1, T2;, respectively, and the operators pXj, 6,, 
(i= 1,2) are defined by 

and, similarly, pX2 and 6,,. The parameter k is arbitrary positive and can be chosen 
to simplify the resulting equations to some extent [3]. Equations (2.3f) and (2.3g) 
represent single valuedness of displacements in cell centers. 

In actual computation the stresses are eliminated from the equations and one 
gets equations involving the displacement only. We will redo here the elimination of 
the stresses, for the case equation (2.3d) through (2.3e) has nonzero right-hand 
sides (see Fig. 2). 
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Using (2.3d j and (2.3e) in (2.3f) and (2.3g), respectively, we get 

Also we have from (2.4a), (2.4b), (2.3d), and (2.3ej the relations 

(2. .a: 4” 

Let T,, T2 be shift operators by 12 in the .x1 and x1 directions, respectively. That 
is, 

T,d(-x,, -Yzj =$(x1 + h, x(7) 

T,&,Y,, x2)=Ip(x1,x2+hj. 

Define the following operators: 

P:,-P.J,, P.:, = or, T, ‘> P .: - PU,, TX 

P:, = ox, T; ’ (2.5) 

6.:,=&J-l, 6~t=6rtT;L.6~;TZ, ~3:~ = ~3,~ TIP’. 

These operators will be used later when stresses are eliminated from (2.3 j. 
Note that equations (2.3) are in terms of displacements and stresses in a given 

cell. A feature of these equations is that stresses in a cell can be computed from dis- 
placements of that cell only (the motivation for the name “compact scheme” ). Since 
the stresses at a point can be computed from the displacement of either of the two 
cells it belongs to and since the stresses at a point are uniquely determined, we get 
the following equations: 

[~.~,-1L~,-(h6.~,+h6~,)1 T,=Q t2.6a) 

Cd2 - II:: - (h a~c + h CJl 72 = Q. (2.4bj 

Upon inserting (2.3a)-(2.3c) and (2.4) into (2.6), we get the following equations, 
which involve displacements only, 
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-~C(P-~~)+(P:,-~f,)lu,-5(fP+S:)=O (2.7b) 

Note that equations (2.7a) and (2.7b) are given on P-points, while (2.7~) and 
(2.7d) are given on Q-points (see Fig. 3). 

Since it is natural to expect that some of the boundary conditions will be given in 
terms of stresses, we have to express the stresses at the boundary in terms of the 
displacement. That is, 

t21 ~~~=fO(d~il(I+6*,~2)~~(Pr~-11~,~~2i~~2. (2.8d) 

where T, B, R, and L refer to top, bottom, right, and left faces of a cell. In the next 

Qz 
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FIGURE 3 
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sections we assume the parameter k to have the value 2/a. For this value of k. the 
equations to be solved are slightly simpler. 

3. INCONSISTENCY AND IMPLICATIONS 

The compact scheme (2.7) is not consistent with this equation in the usual sense. fn 
fact, if we expand the different terms in (2.7) in a Taylor expansion, we find the 
following: The equations at P-points are consistent with 

and the Q-equations are consistent with 

(3.23 

(3.3a) 

Neither (3.2) nor (3.3) are the equilibrium equation of elasticity. However, by 
summing (3.2) with (3.3) and using the definitions of 5, I?, and G, we get back (3.1). 
That is, we have consistency in an averaged sense. 

The fact that we have only consistency in-the-average is important when coarsen- 
ing has taken place in a multigrid process. Residuals that are transferred to coarser 
levels should be better related to equations which are consistent with the differential 
equation. 

This can be achieved for Eqs. (2.7) if we sum the proper equations to ensure 
consistency with (3.1). That is, by summing (2.7a) with (2.7~) and (2.7b) with 
(2.7d), consistency with (3.la) and (3.lb), respectively, is obtained. 

If boundary conditions are given in terms of stresses, residual transfer should be 
done carefully. By looking at (2.8) we see that the discretization is such that the 
boundary condition has a contribution from the right-hand side of the interior 
equation. Residual transfer to coarser levels should maintain this. 
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4. INSTABILITY 

Another important property of the scheme (2.7) is its instability. That is, there are 
highly oscillatory displacements which satisfy the interior equations with a zero 
right-hand side. This means that large changes in these components, or components 
close to them, will affect the residual very little. Hence, a small change in the 
equations can introduce large changes in the solution in these unstable components. 
This is a numerical instability, since a correspondingly large change in the differen- 
tial solution cannot occur. 

We show below how to find the unstable components by means of Fourier 
analysis. We consider the homogeneous equations and write it in the form 

where U,( U,) denotes the u1 values on P(Q) points and similarly V, (V,) denotes 
u2 values on P(Q) points. Consider displacements of the form 

exp( i0 . x/H), 

where 8 = (0,) f3:), H= 2h (the size of a cell), and Id/ < rc, where 
161 =max(W,l, W,l). For this choice of displacements we have 

where g’(0) is a 4 x 4 matrix of functions depending on 8. By looking at L?(Q) we 
can examine the stability of our scheme. If there exists a 0 #O such that 
det L?(6) = 0, it means that there are high frequency components which solve the 
homogeneous equation. For our scheme 

det p(6) = 0 

implies I3 = (0,O) or 0 = (rc, n). The unstable Fourier component is therefore 
I3 = (n, n). Its amplitude is obtained by solving the equation 
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for a nontrivial solution. This gives us 

A,=O, A,=l, BP= -1, B,=O. 

This corresponds to the displacements (in a cell) shown in Fig. 4. 
The computation above shows that these are the onfy unstable components. 

Hence, this scheme satisfies the definition of quasi-ellipticity given in [2]. 
Since det J$‘($) = 0 for some 0 # 0, in an infinite space, or under periodic boun- 

dary conditions, there exists a highly oscillatory function v~(x) = A exp(i0 . x/H) 
which satisfies the homogeneous equation Lh~h=_O. Hence, the solution, unlike the 
corresponding differential solution, is not unique (up to an additive constant ); it 
contains an undetermined highly oscillatory component. Similarly, for domains 
with smooth boundaries and boundary conditions with smooth coefficients, 
functions W(X) close to v”(x) (e.g., W’ = cj 1 11” + (6?, dj being smooth) exist which 
satisfy the boundary condition and for which Lh Wh is everywhere small. Such IV’, 
therefore, forms an unstable mode: a small change in the equation can introduce a 
large change proportional to Wh. 

This is a kind of numerical instability, since a correspondingly large change in the 
differential solution cannot occur. The numerical instability need not hurt much: If 
the differential system is L U = f and the discrete system is L” U” = fh, all one has to 
do is to defined Fh = IhF, say, through an averaging operator which liquidates the 
unstable modes. Another way to remove the instability is by averaging the solution, 
that is, by replacing the computed solution Uh by ShUh, where Sh is an averaging 
operator which removes all the unstable components but retains the accuracy of 
smooth components. 

When derivatives are calculated, much greater loss of accuracy can occur than In 
the solution itself. The averaging process discussed above reduces this inaccuracy in 
derivatives. 

In the problem we treat here, the stresses, as computed from the displacements, 
are the important physical quantities. Since they involve derivatives of dis- 
placements, we might expect to see degradation of accuracy as a result of the 

FIGURE 4 
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instability. However, the unstable components for the scheme discussed here are 
such that they produce zero stresses. That is, no loss of accuracy in the stressses 
occurs as a result of the instability. 

The mentioned instability has strong implications on the multigrid method to be 
used. Usual multigrid solvers yield poor asymptotic rates when applied to quasi- 
elliptic schemes. The reason is simple: slow to converge are the unstable modes. 
They cannot converge by coarse-grid correction, since they are high-frequency 
modes, essentially invisible or coarser levels. Neither can they significantly converge 
by any type of local relaxation since these unstable modes show a very small 
residual function (compared with residuals shown by other modes with comparable 
amplitude) and the correction introduced by relaxation is proportional to the size 
of the residuals (see cl]). The smoothing factor for such schemes is 1, and it is 
achieved at the unstable modes. 

The poor asymptotic convergence is not important. The modes which are slow to 
converge are exactly those unstable ones for which algebraic convergence is not 
really desired, their amplitudes in the algebraic solution being unrelated to their 
amplitude in the differential equation. The only concern is that these amplitudes 
will remain suitably small. 

Although the scheme (2.7), (2.8) . 1s unstable and inconsistent, in some sense its 
solution converges to the solution of (3.1) with the appropriate boundary con- 
ditions, as h + 0 (see [3] ). 

5. PRACTICAL IMPLEMENTATION 

In this section we describe the elements of a multigrid procedure defined in 
Section 6. 

Relaxation 

As a relaxation we have used Gauss-Seidel for the interior equation, where the 
P-points are relaxed first followed by the Q-points. 

Relaxing the traction boundary conditions is done slightly differently (see [l, 
Section 5.31). Instead of performing Gauss-Seidel for the traction boundary con- 
dition BLJ= g, we perform Gauss-Seidel on the equation (a’/&‘) BU = (d’/ds’) g, 
where a/as is derivative tangential to the boundary. Practically, it means that 
instead of satisfying a given equation at a boundary point, we only change it such 
that its residual is the average of the residuals at neighboring boundary points. 

To be more specific, let (SU)i be written as 

(BU)j= (B, U’b’)j+ (B, Ui”)j, 

where qjb) are the boundary values at the point j and U(j) are interior values only. 
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The jth step of the relaxation of the boundary conditions is to replace Ujil”’ by cl”) 
which satisfies the equation 

In general, the changes introduced for smooth error functions by using a 
Gauss-Seidel relaxation on an operator or order r~, are of order O(P), where j’z is 
the mesh size. If 1 is the order of the boundary condition, then it is usually less than 
M, the order of the interior equations, and as a result, the charges at the boundary 
are O(h’-“I) larger than those of the interior. In our case 1’= 1, WI = 2, hence, by 
relaxing (d’/?S”) El?= (8/B’) g instead of the original boundary condition, we 
make changes at the boundary which are 0(/z) smaller than that of the interior. 
Such a relaxation, unlike the straightforward Gauss-Seidel, preserves the 
smoothness of the interior approximation. 

The coarsening method we have used here is referred to in [Ill as coml@Dle 
coarsening. That is, the coarsening procedure is analogous to the fine-grid dis- 
cretization. Each 2 x 2 fine-grid cell forms a coarse grid cell [see Fig. 52. Coarse 
grid equations are defined using formulas (2.7), where fi and fi are replaced by 
residuals of finer levels, which are consistent with differential residuais. 

Let X be a coarse grid point (either P or Q). Et has four tine grid points that arc 
close to it (see Fig. 5). Two of those are P points and the other two are Q points. 
The equations at X are similar only to one pair of its fine grid neighboring poinrs 
(either P or Q). A natural way to transfer residuals therefore can be averaging the 
two residuals of the right pair. This, however, will not be consistent with the d&- 
cretization (2.7), which puts the original source terms averaged from the continuous 
ievel in the right-hand side. The residuals at P points or Q points are not consistent 
with differential residuals. It is the appropriate average of P and Q equations that 
has this property. 

0 Coarse grid points 
0 Fine grid points 
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Denote by ~L(xI, x2), r{(xl, .x2), r{(x, , x,), and r$(xi, x2) the line grid residuals at 
(~1, ~1) of Eqs. (2.7a), (2.7b), (2.7c), and (2.7d), respectively. Let (x,, x2) be a P 
point on a coarse level. The nonhomogeneous terms there for Eqs. (2.7a) and (2%) 
are given by 

r:tx,, x2,=$cr;(.‘cI +h, x2) +rL(x, -h, x,)+r-;f(x,, x2 +h)+r{(x,, x2-h)] 

ri;(x~, -X2) = $Cr{(-YI + h, +) + ri(xl - h, x2) + ri(xl, x2 + h) + r$(x,, x2 - h)]. 

The formula for Q points is analogous. 
The discrete traction boundary conditions involve source terms of the interior 

equation. When transferring residuals to coarser levels, the interior residuals near 
boundaries, therefore, should be transferred appropriately to traction boundary 
conditions on coarse levels. We demonstrate this transfer for Eq. (2.8b). Other trac- 
tion boundary equations are transferred in an analogous way. Let (x1, x2) be a 
boundary point on which the boundary condition is z{; = g, where T{* is given in 
(2.8b) by either TF~ or rfz (on the top or the bottom boundary, respectively). Let 
/lx,, x2) denote the residuals of this boundary condition at the line level at the 
point (x,, -x2). The coarse grid boundary condition is 

zf2 = $[r’(x, -h, xt) -I- r/(x1 + h, x,)], 

where tfz is given by (2.8b) (either by 7fi or by $), replacing +(h/2)f, by 
r:(xl f 2h, x2 1. 

Interpolation 

In interpolating corrections from a coarse to a line grid, we used the following 
procedure: 

(a) Define values at midcells and at vertices on the coarse level by linear 
interpolation. 

(b) Linearly interpolate corrections to the line grid, using midcells and vertex 
values defined in (a) and the original coarse-grid function. 

Averaging 

An averaging operator was applied to corrections before interpolating them. This 
was done in order not to introduce high frequency errors which are unstable. The 
averaging was such that it damped the unstable mode but retained the accuracy of 
the scheme. In the interior, it is given by the formula 

(S$)(x) = Q[4ui(x, y) + ui(x + h, y + h) + ui(x + h, J’ - h) 

+ 241(X - h, -Y + h) + Ui(X - hy y - h)], (i= 1, 2), 

and at the boundaries averaging is done by 

(S~Ui)(X)=$[Uj(X+)+2Ui(X)+ Ui(X-)]y 
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where x=(x1,x2) and x+, x- are the two neighboring points of x on the bonn- 
dary. Averaging is applied first at boundaries with traction boundary conditions 
followed by interior averaging. 

6. FMG SOLUTION TO TRIJNCATION LEVEL 

Since the multigrid cycling is inefficient in reducing unstable mode errors, the 
multigrid solver should take care not to start with an initial solution which contains 
large amplitudes of such errors. The overall initial error in unstable modes should 
be smaller than the overall truncation error. This is easily obtained by taking a first 
approximation from a coarser grid and employing interpolation of a suitable order. 
The usual “full multigrid” (FMG, also called “nested iteration”) algorithm can 
therefore be used, with slight modification described in the following. For a 
flowchart and a detailed discussion of FMG algorithms and the order of the first 
interpolation, see Sections 1.6 and 7 in [ 11. Here we describe the correction scheme 
(CS) version of the algorithm since our problem is linear, and issues of local 
refinement are not discussed here. 

6.1. Multigrid cycle 

Suppose a sequence of grids is given with meshsizes It, (k = 1, 2: 3, .I. j, where 
h k+ I = h,J2. On the hk grid the discrete equations have the form 

LkUk = Fk, (6.1) 

where Lk approximates Lk+ ‘. Given u$, an appropriate solution to (6.l), the mul- 
tigrid cycle MG for producing an improved approximation, u/;: 

is recursively defined as follows: 
If k = 1, solve (6.1) by any direct or iterative method, yielding the final result u:. 

Otherwise do (A) through (D): 

(A) 
Uk. 

Perform vI relaxation sweeps on (6.1), resulting in a new approximation 

(B) Starting with u;- ’ = 0, make y successive cycles 

u”-‘cMG(~-~,u~~~,‘,Z~-~(F~-L~U~)), J (j= 1, . ..) y), 

where If-’ is a transfer (“restriction”) of residuals from grid hk to grid h,- l ~ 
(C) Calculate Ek = iik + 1; _ I Sk - ‘u:- ‘, where 1: _ 1 is a suitable interpolation 

(“prolongation”) from grid h,- I to grid h, and Sk-l is a suitable averaging 
operator. 
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(D) Perform vz relaxation sweeps on (6.1), starting with ck and yielding the 
final result 24:. 

The cycle with y = 1 is called a V cycle or V(v,, vz), and the one with I’= 2 is 
called a W cycle or W(v, , vz). 

6.2. Full Multigrid (FMG) 

The N-FMG is an algorithm for calculating an approximate solution 

uk = FMG(k N Fk N) 3 1 (6.4) 

to Eq. (6.1), defined recursively as the following two successive steps: 

(a) Calculating a first approximation uz: if k = 1, put z.46 = 0. Otherwise, put 
k 

u;= n FMG(k- 1, I;-‘Fk, N), 
k-l 

(6.5) 

where nE_ I is an interpolation operator from grid hk- 1 to grid h,, and Ii-~’ is a 
transfer from grid k to grid k - 1. 

(b) Improve the first approximation by N successive MG cycles 

u; t MG(k, ui”- i, Fk), (j = 1, . . . . N) 

as defined in Section 6.1. 

Usually the order of the FMG interpolation, nE_ r, is higher than that of 1:- r. 
If nz-, is of order q and the differential equation is of order nr, then the residuals 
introduced by high frequencies as a result of the interpolation are of order O(hq-“). 
Let p be the order discretization. A smooth solution on level k - 1 when inter- 
polated by Hi- I has residuals of order O(hP) on the fine grid. One would like then 
to have p <q-m in order that residuals resulting from interpolation will not be 
larger than the smooth part of the residuals. Otherwise, the number of cycles 
needed to drive residuals to the level of truncation errors will be h-dependent. 

Another way of obtaining initial high-frequency residuals with order not larger 
than O(hP) is by using an interpolation of order p (which is necessary for the 
smooth part of the solution) and then apply an averaging operator of order p (that 
damp all the high frequencies), I times, where 1 is such that lp - m B p. Note that 
the accuracy of the smooth part is still O(hp) after this averaging. In some situation, 
this may be practically easier than constructing a high order interpolation. In any 
case, this approach of smoothing can always be used. 

7. RESULTS AND DISCUSSION 

A domain {(x, JJ): 0 <x Q 1, 0 < y < 11 is considered. Boundary conditions are 
given in terms of displacements on the two boundaries x = 0, and x = 1. Stresses are 
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given on the boundaries I! = 0, y = 1. The finest level uses a mesh size of Q, and 5 
levels were used in the multigrid process. In the notation of Section 6 the following 
parameters were used: 7 = 2, \!I = 2, 1~~ = 2, and hi= 4. Two problems have been 
considered. 

PROBLEM I. Solution is given by 

u1 = u2 = sin(2(x + 2.~ - 2)). 

PROBLEM II. Solution is given by 

z4 I = 242 = (x2 + y2y, ‘LY = 0.25. 

In both cases, appropriate source terms were introduced to generate these 
solutions Note that in Problem II the solution is not smooth at the corner 
t-x,, x1) = (O., 0.). Convergence, therefore, is not expected to be 0(/z’). Tables I and 
II show the dynamic &-norm of the residuals on the currently finest level, as well 
as the error in the approximation at that stage. It is seen that after two cycles the 
problem is solved to the level of discretization errors. We show results for i\i= 4, 
not because it is really needed, but in order to show that indeed, N= 2 is enough to 
obtain an approximate solution whose errors are below the level of discretization 
errors. Observe that the asymptotic convergence rate, as predicted, is not very fast. 
It is related to the unstable components. This should not bother us since we do not 
want the unstable component to converge. All we need from these components is to 
have errors below the level of discretization errors. 

TABLE I 

Problem I 

Level Cycle I/ Residuals II 2 lb+ - ~,,,,‘/I 2 

2 5 0.866( -4) 0.406( - 3) 

3 1 0.611(-2) 0.481(-4) 
2 0.191( -2) 0.288( -4) 
3 0.697( - 3) 0.258( -4) 
4 0.303( - 3) 0.250( -4) 

4 1 0.164( -2) 0.935( -Sj 
2 0.822( -3) 0X32( -5) 
3 0.643( - 3 j 0.579( -5) 
4 0.512( -3) 0.577( - 5) 

5 1 0.105( -2) 0.396( -5) 
2 0.540( -3) 0.13&( -5) 
3 0.468( - 3) 0.140(-f+) 
4 0.415( -3) O.f40(-5) 
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TABLE II 

Problem II 

Level 

2 

3 

4 

5 

Cycle )I Residuals\/ z Iluh- Gac* II 2 

10 0.287( -2) 0.266( - 1) 

1 0.485 0.831(-2) 
2 0.207 0.749( -2) 
3 0.103 0.660( -2) 
4 0.543( - 1) 0.629( -2) 

1 0.453 0.224( -2) 
2 0.237 0.181(-2) 
3 0.162 0.193( -2) 
4 0.122 0.179( -2) 

1 0.460 0.725( -3) 
2 0.246 0.512( -3) 
3 0.172 0.625( -3) 
4 0.134 0.531( -3) 

The results clearly show that a very efficient method for dealing with a compact 
scheme is obtained in spite of the fact that such schemes have instability and incon- 
sistency properties. 
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